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The axisymmetric problem of tension of an elastic space weakened by a plane annular slit
is examined. In the solution the effective asymptotic method analogous to the one developed
in paper [1] is used.

Papers [2 and 3] were devoted to the development of approximate methods for the solu-
tion of the presented problem. An asymptotic method of solution of the problem of an annu-
lar slit which represents a further development of the method presented in paper[1], is
applied for the solution below. The method permits to obtain the .solution of the problem
under examination in the form of simple equations for large and small values of parameter
A+ Over some intermediate interval of variation of A these asymptotic formulas give practi-
cally identical results, thus assuring a complete solution of the problem.

1. Solution of the problem for large A. In the elastic space let a plane
annular slit (cut) be present occupying the region: a <r < b, 0< #< 27, z = 0. The space
is extended by forces distributed evenly at infinity, of intensity g, in the direction perpen-
dicular to the plane of the slit. It is required to determine the form of the surface of the
slit y(r) and the coefficient of intensity of normal stresses N, calculated without taking in-
to account forces of cohesion at points r = @ and r = b (z = 0). The problem under investi-
gation is reduced to an auxiliary problem of an annular slit in a space, to the surface of
which a normal load 0, = — ¢ = const is applied, while the stresses at infinity are equal to
zero.

Expressions determining y(r), N, and N, are the same for the initial and the auxiliary
problems, therefore in the following we will examine the auxiliary problem. By means of
the Hankel transformation the latter problem can be reduced to finding the function y(r)
from the following integral Eq.
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Here E is Young's modulus, v is Poisson’s ratio, ]o (x) is the Bessel function of zero
order. Integrating both parts of Eq. (1.1) twice with respect to r, we obtain
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Here K (k) is the complete elliptic integral of the first kind, 4 and B are constants of
integration. After making in Eq. (1.2) a substitution of variables according to Egs. 1]
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r =aexp —;’—:c, p=a exp —;E (1.3)
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we obtain an integral equation of the first kind with an even difference kernel which depeads
on the dimensionless parameter \
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Following paper [ 1] we represent the kernel M (2) of the integral Eq. (1.4) in the following
form:

M{)=—Inlt]| -+ 2 ct2’+ln[zlzdl2‘ (1.6)
i=0
(c = 2,079, c1 = —~ 0.1091, €, = 0.05352, d = 0,0625, d == 0 00358 etc.)
The series in (1.6) converge for all (< ¢ < m. Substnutmg kemnel M (¢) in the form (1.6)
into Eq. (1.4) we obtain
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Applying the transformation formula to Eq. (1.7), we obtain the integral equation of Fred-
holm of the second kind with respect to function ¢ (x):
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In this connecuon the following condltions must be fulfilled [4]:
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W may show that the first relationship (1.9) is an identity. The second relationship (1.9)
and the expression (1,10) serve to determine constants A and B.
We shall seek the solution of Eq. (1.8) in the following form:

o] n
@)= Y D A" Ay, (2) (1.11)
n =0 Mm=0
Let us substitute ¢ (x) in the form (1.11) into the left and right parts of Eq. (1.8), Then
equating expressions for equal powers of A"? and In A, we obtain an infinite system of in-

tegral equations with respect to b, (x):
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Omitting intermediate calculations with respect to Eqs. (1.3) and (1.9) to (1.12), we
present the final expression for determinatior of function y (r):

g (. b\ ( _r_)

'r()—A Ve (m —In— ®i{Aln Vb (1.13)
In the expression (1.13) the function ®{¢) is equal to (1.14)

@ (1) =1+ (0.246 4 x) ™2 -+ (0.0708 - 0.276y + ¢ A~4 + [1.750 -+ (0.336 +- ) A -

-+ (0.00822 — 0.1769) A~4] /A - [1.604 4 (0.264 + 0.385y%) A2 (¢/A) +

-+ (1.029 4- 0.119272) (2/M)® 4 0.517 (/A3 4 0.245 (¢/A)> + O (A7%) (y=10.0625In 1)

'The coefficient of intensity of normal stresses at points r = g and r = b of the slit, res-
pectively, are determined from conditions

N, =lim YVa—rs,=lim 'Vr—aA dr

r—a (r<a) z r—a (r>a) a 15)
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Substituting y {r} in the form {1.13) into condition (1.15) we obtain
__ g Vad(—1) q Vb0 (1)
e , Ny= = 1.16)
V¥V 2hexp(—2.5/A) V2hexp(2.5/4)

2. 'Solution of the problem for small A (method of successive ap-
proximations). Let us differentiate with respect to r both parts of Eq. (1.2). Then in-
tegrating by parts and making use of the condition

we obtain
b =]
(v @ § nEnn@oe=— L (Freal) <y (2.2)
a 6
The integral Eq. (2.2) is equivalent to the following system of two integral Eqgs.:
b [ o] =2
§pn’ ®rdp § @) ) dE=— 2 +S o’ @ dp § Juer) 71 (8)
H b H
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under the condition that
YO =v0O+v0 (2.4)
Let us introduce functions Fl(f } and F2 (&) in the following manner:
r = T A{r)  (o<r<b) _
§ ET1 (B) J1 (Br) dE {_ o eaw 2.5)
o0
= =1 e<r<e
§ ETs (8) Ty (Br) dE = { e 2.6)



464 B.I. Smetanin

In this case the s{_gtem {2.3) is reduced to two dual integral equations with respect to

fanctions I (f) and [, (£):

o3
S ML E =~ | O E)E=—1 () e
’ o<r<b) ’ (b<r<<oo)
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Applying the transformation formula to Eqs. (2.7} and {2.8), and substituting the obtained
functions I, (£) and I, (£) into (2.5) and {2.6}, we obtain a system of two integral equations
of the secomi kind with respect to functions Y, ‘() and y2 “iry
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It is evident from (2.9) that the presented method is applicable to small values of A,
because small A correspond to wide annuli, i.e, to the case when either ¢ is smallor b is
large for &> a. We shall seek the solution of system {2.9} in the form

T (r}-ﬁ Ty () Ty ()= 2 Ty () (2.10)
i==0 =0
o3 R —
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T’ (F) = aar YVriE— g2’ s, i+1 (r)= ER V= azS r¥— p? ap

0
(i==0, 1, ...)
Limiting ourselves to calculation of functions y n'(r) and y 21'(r) and teking into ac-
count of {2.10) and (2.4}, we obtain
i 2¢ r 1 ré(a? - 5% — 2872 B b-a
T ="x T {—,? are cos v —an—— +r in = ;} —
2g9abC i a% 4 b3 — 2r2 rz bia
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®
Substituting y“(r) in the form (2,11) into condition (1,15) we obtain
7 V2o C VE 14 ¢ ¢ V2 ¢ 148
No= — ( Ve~ x =), N=1% (1_“%1“1“*“ ) (2.12)

(e ==exp (— 2/A))
Integrating function y'(r) in the form (2.11) we obtain

(2.41)
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o 2\ 2¢qb
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The constants C and D are determined from condxtlons (2.1):
_ 1 2arccose 4+ Y1 —etln [(1 +e)(1—e)T]

T ™ arccose - (0.3634 1 0.1715e3 - 0.1117e5 1 0 (¢7)) Y 1 — &8 (2.14)
D=2a"%{2arccose 4 V1 —eln[(1+e)(1t — e} —C

3. Solution of the problem for small A (method of products). Nu-
merical analysis of the problem. A solution of Eq. (1.1) which is applicable to
small values of parameter A can also be obtained in the form of combination of solutions of
integral Egs. [1]

b ©

fenod (onenema=1t o<r<v (3.1
o 0 0
Senmds (enenea=1tne e<r<w (3.2
a 0

in the following form:

13 (r) va(r)
15 (r)
Here y 4(r) is a degenerate solution of Eq. (3.2) which represents the first term of the

asymptote Yo (r) forr/a » 0.

()= é’l‘; (3.3)

The solution of Egs. (3.1) and (3.2) can be obtained if these equations are reduced to
their equivalent dual integral equations, for example as this was done in the solution of
Egs. (2.3). We present the final expressions

13 (r) = }%Z‘_ Vo —7r% 1) = AB (arc cos — + 0@ )) (3-4)
It follows from the second relationship (3.4) that
vs ()= q(AB) {1 + O (%] (3.5)
Substituting Y3 ), Vs (r) and ys(r) in (3.3) we obtain
y() = A14gn 2y b* — 7% arccosa/r (3.6)

The expression which determines the coefficient of intensity of normal stresses at

points r = a and r = b are obtained from relationships (3.6) and (1.15), respectively
No=2Vbgn2% "Y1 —¢, Np=2V2bgn2arccose (3.7

Completed calculations showed that Eqs. (1.13) and (1.16) can be used reliably for 2 <
$A<o0, Egs. (2.12) and (2.13) for 0 <A < 2 and Eqs. (3.6) and (3.7) for 0 < A < 0.75. A
numerical analysis of equations for N, and N, shows that N, is always larger than N,. It
follows from this that the form of the annular sllt is unstable, The development of the annu-
lar gap for monotonous increase of the load g applied at infinity starts at points of the inner
contour and the annular gap transforms into a circular gap of radius r = b.

We present the values of quantities y* = (qb)'lAy(O 5(a+ ), N*= (g \/—)'IN and
Nj*=(g \/b) N, , calculated for A= 2 (the first two columns) and )t= 0.75 (the thlrd and
founh column) from equations of Sections 1, 2 and 3:
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Section 1 2 2 3

0.326 0.323 0.503 0.493
0.493 0.486 1.143 1.084
0.372 0.369 0.437 0.430

2
o
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